Энергия и энергетика сегодня

Основы термодинамики

Определение: Рабочие тело

- определенное количество вещества, которое, участвуя в термодинамическом цикле, совершает полезную работу.

Рабочим телом в реакторной установке РБМК является вода, которая после испарения в активной зоне в виде пара совершает работу в турбине, вращая ротор.

Определение:

Передача энергии в термодинамическом процессе от одного тела к другому, связанная с изменением объема рабочего тела, с перемещением его во внешнем пространстве или с изменением его положения называется работой процесса

.

Первый закон термодинамики.

Формулировка:

В изолированной термодинамической системе сумма всех видов энергии является величиной постоянной.

Этот закон является частным случаем всеобщего закона сохранения и превращения энергии, который гласит, что энергия не появляется и не исчезает, а только переходит из одного вида в другой.

Из этого закона следует, что уменьшение общей энергии в одной системе, состоящей из одного или множества тел, должно сопровождаться увеличением энергии в другой системе тел.

Существуют другие формулировки этого закона:

1. Не возможно возникновение или уничтожение энергии (эта формулировка говорит о невозможности возникновения энергии ни из чего и уничтожения ее в ничто);

2. Любая форма движения способна и должна превращаться в любую другую форму движения (эта философская формулировка подчеркивает неуничтожимость энергии и ее способность взаимопревращаться в любые другие виды энергии);

3. Вечный двигатель первого рода невозможен. (Под вечным двигателем первого рода понимают машину, которая была бы способна производить работу не используя никакого источника энергии);

4. Теплота и работа являются двумя единственно возможными формами передачи энергии от одних тел к другим.

5.

Энтальпия.

В прошлом столетии Гибсс ввел в практику тепловых расчетов новую функцию - энтальпию.

Определение: Энтальпия

- это сумма внутренней энергии тела и произведения давления на объем.

I = U + PV

Где:

I - энтальпия; U - внутренней энергия; P - давление; V - объем.

Удельная энтальпия i

это отношение энтальпии тела к его массе.

Удельная энтальпия это параметр состояния.

Значение удельной энтальпии пара и воды при определенном давлении и температуре можно найти в справочнике. Пользуясь этими данными, можно определить количество теплоты участвующее в процессе или работу процесса.

Энтропия

Теплота q

не является функцией состояния, количество теплоты выделившейся или поглотившейся в процессе зависит от самого процесса. Функцией состояния является энтропия обозначается S

размерность Дж/К

dS = dQ/T

где:

dS - дифференциал энтропии; dQ - дифференциал теплоты; Т - абсолютная температура;

Удельная энтропия отношение энтропии тела к его массе. Удельная энтропия s является справочной величиной.

Удельная энтропия - функция состояния вещества, принимающая для каждого его состояния определенное значение:

s = f (Р, v, Т)

Тепловая Т- S диаграмма.

Удельную энтропию можно применять совместно с одним из основных параметров для графического изображения процессов. Аналогично тому, как мы строили изменение объема в зависимости от изменения температуры, мы можем изобразить некоторый процесс изменения энтропии и температуры в Т-S координатах. В этом случае любая точка на графической плоскости соответствует определенному состоянию рабочего тела, а линия от точки 1 до точки 2 отображает некий термодинамический процесс. Особенностью Т-S координат является то, что площадь под линией процесса соответствует количеству энергии отданной или полученной рабочим телом.

Т - S диаграмма цикла Карно

На данной диаграмме представлен некий замкнутый цикл. Система последовательно переходит из точки 1 в 2 затем 3, 4 и снова в 1. Из графика видно что процесс 1 2 является изотермическим (происходит при Т1) и процесс 3 4 также является изотермическим (происходит при T2)

Перейти на страницу: 1 2 3 4 5 6 7

Back to Top