Расчет тепловых потоков абсорбционной бромисто-литиевой холодильной машины
Схема машины — с генератором затопленного типа и рециркуляцией слабого раствора и воды соответственно через абсорбер и испаритель. Подача охлаждающей воды в абсорбер и конденсатор параллельная.
Исходные данные
Температура воды, К:
греющей Th 393
охлаждающей Tw 299
охлажденной Т3 280
Принятые значения температур и давлений следующие. Высшая температура в конце процесса кипения раствора в генераторе T4 = Th — DTh = = 383 — 28 = 365 К. Температуры конденсации водяного пара Tк, раствора в конце процесса абсорбции Т2, кипения воды в испарителе Т0 приняты равными
|
Рис. 9. Принципиальная тепловая схема ГТТЭХЦ-7500Т/6,3.
КС — камера сгорания; ГТ — газовая турбина; ГПСВ — газовый подогреватель сетевой воды; ВД – вакуумный деаэратор; АБХМ – абсорбционная бромисто-литиевая холодильная машина
Tк = 307 К, Т2 = 307 К, Т0 = 277 К. Давления конденсации рк и кипения р0 рабочего тела соответственно будут рк = 5,45 кПа, р0 = 0,83 кПа.
Так как давление конденсации пара рабочего тела значительно выше давления его кипения, удельный объем пара в конденсаторе при данных условиях почти в шесть раз ниже удельного объема пара в испарителе. В связи с этим в блоке генератор — конденсатор скорость движения пара из генератора в конденсатор будет низкой и гидравлическими сопротивлениями прохождению пара между указанными аппаратами можно пренебречь и принять давление кипения раствора рh равным давлению конденсации пара рк, т. е. рh = рк = 5,45 кПа. В блоке абсорбер — испаритель из-за высокого значения удельного объема пара скорость его движения из испарителя в абсорбер будет значительной (40 — 50 м/с), вследствие чего необходимо учесть суммарные гидравлические сопротивления SDp на всех участках движения пара из испарителя в абсорбер. По опытным данным в промышленных типах машин величина SDp достигает 0,133 кПа. Тогда давление пара в абсорбере ра = р0 — SDp = 0,83 — 0,133 = 0,697 кПа. Теоретическое значение концентраций x слабого и x
крепкого растворов определяют по x-i диаграмме по соответствующим значениям Т2, ра и Т4, рh: x
= 58,6 %, x
= 67,5 %. Действительная концентрация крепкого раствора ниже теоретического значения x
на величину недовыпаривания Dxr раствора, которое в генераторе затопленного типа возникает в основном из-за отрицательного влияния на процесс кипения гидростатического давления столба кипящего раствора.
По опытным данным в генераторах затопленного типа промышленных машин величина Dxr изменяется в зависимости от параметров работы в пределах 2,5—3,5 %. Тогда xr = x — Dxr = 67,5 — 3,5 = 64,0 %. Действительная концентрация крепкого раствора из-за опасности его кристаллизации в аппаратах, трубопроводах и других элементах машины не должна превышать 64 %.
Рис. 10. Схема АБХМ: а — схема машины; б — процессы в x-i диаграмме;
I – конденсатор; II – генератор; III – испаритель; IV, VI, VII – насосы рециркулируемой воды, смешанного и слабого растворов соответственно; V – абсорбер;