Энергия и энергетика сегодня

Фирма-изготовитель и тип ГТД

23

25,5

23,0

20,5

21,5-35,5

28,5-43

19,5

Длина ГТУ, м

9,2

9,2

6,5

7,3

5,5-6,4

8,8-9,8

8,8

Ширина ГТУ, м

3,1

3,4

4,0

3,4

2,1-3,4

3,4

3,05

Высота ГТУ, м

4,0

3,4

3,9

3,1

2,1-3,4

3,1-3,4

2,8

Специфическими качествами ГТУ, созданных на базе авиационных двигателей, являются очень малые масса и габариты, быстрота запуска (до 1,5 мин до полной нагрузки в установках мощностью 20-25 МВт) при небольшой пусковой мощности и полной автономности, возможность быстрого восстановления при неполадках путем простой замены ГТД-генератора газа или даже всего агрегата. Недостатки таких ГТУ — более жесткие требования к топливу и эксплуатационному обслуживанию, сложная технология капитальных ремонтов, возможных только в заводских условиях. Используемые в энергетических ГТУ двигатели выпускаются специально для промышленного применения. Для обеспечения эффективной работы в наземных условиях часть их деталей либо переконструирована по сравнению с авиационными прототипами, либо изготовлена по измененной технологии или из других материалов. Параллельно осуществлялись мероприятия по повышению мощности и КПД путем совершенствования турбомашин, увеличения расхода воздуха, степени сжатия и начальной температуры газов и улучшению эксплуатационных качеств: увеличению ресурса деталей, длительности непрерывной работы, ремонтопригодности.

В промышленных ГТУ на базе ГТД третьего поколения "Спей", RB211, TF39 и CF6, выполненных с более высокими степенями сжатия и экономичными системами охлаждения, достигнута существенно более высокая экономичность (см. таблицу 1). Наиболее мощной из этих ГТУ является установка с генератором газа типа LM5000, созданным фирмой General Electric c использованием до 70% деталей турбовентиляторного ГТД CF6. На его конструкции остановимся подробнее.

Вентиляторная ступень ГТД снята и заменена двумя первыми ступенями пятиступенчатого КНД со степенью сжатия 2,5. Далее идет одновальный КВД (14 ступеней), который сжимает воздух до давления 3 МПа.

Камера сгорания — кольцевая с 30 устанавливаемыми извне регистровыми горелками. Зона горения спроектирована с повышенными избытками воздуха, для того чтобы снизить дымление, сократить длину факела и уменьшить количество воздуха, необходимого для охлаждения пламенной трубы. Начальная температура газов составляет 1150-1180 °С.

КВД приводится во вращение двухступенчатой ТВД, все лопатки которой охлаждаются отборным воздухом из КВД. Ротор КВД — ТВД выполнен трехопорным; как обычно, в ГТД используются подшипники качения.

Блок КВД — камера сгорания — ТВД использован в таком же виде в ГТУ LM2500, несколько сотен которых уже выпущено для морского флота и промышленности, некоторые из которых проработали свыше 40 — 50 тыс. ч.

Одноступенчатая ТНД, вращающая вал КНД через соединительный вал, проходящий внутри вала КВД — ТВД, специально спроектирована для ГТУ LM5000. общая длина генератора газа (без силовой турбины) 4,47 м, масса 3,9 т.

Энергетические ГТУ с агрегатом LM5000 спроектированы и выпускаются несколькими фирмами. Они оснащаются трехступенчатой силовой турбиной, ротор и статор которой выполняются охлаждаемыми. Продолжительность нормального пуска до включения электрогенератора в сеть составляет 7, ускоренного — 3 мин.

Глава 2. Тепловой расчет газотурбинной

теплоэлектроцентрали на базе АГТД

2.1. Описание газотурбинной ТЭЦ на базе АГТД и ее принципиальная тепловая схема

Газотурбинная теплоэлектроцентраль ГТТЭЦ-7500Т/6,3 с установ­ленной электрической мощностью 7500 кВт состоит из трех газотурбоге­нераторов с турбовинтовыми двигателями АИ-20 номинальной электри­ческой мощностью 2500 кВт каждый. Принципиальная тепловая схема ГТТЭЦ-7500Т/6,3 показана на рис. 7.

Тепловая мощность ГТТЭЦ 15,7 МВт (13,53 Гкал/ч). За каждым газо­турбогенератором установлен газовый подогреватель сетевой воды (ГПСВ) с оребренными трубами для подогрева воды отработавшими газами на нужды отопления, вентиляции и горячего водоснабжения поселка. Через каждый экономайзер проходят отработавшие в авиационном двигателе газы в количестве 18,16 кг/с с температурой 388,7 °С на входе в экономайзер. В ГПСВ газы охлажда­ются до температуры 116,6 °С и подаются в дымовую трубу. Для режимов с пониженными тепловыми нагрузками введено байпасирование потока выхлопных газов с выводом в дымовую трубу.

Расход воды через один экономайзер составляет 75 т/ч.

Сетевая вода нагревается от температуры 60 °С до 120 °С и подает­ся потребителям для нужд отопления, вентиляции и горячего водоснабжения под давлением 2,5 МПа.

Часть воды, нагреваемой в ГПСВ из коллектора прямой сетевой воды поступает в горизонтальный вакуумный деаэратор, который работает при абсолют­ном давлении 0,01 МПа и деаэрирует химически очищенную воду, поступающую с хим­водоочистки для нужд горячего водоснабжения и для восполнения по­терь сетевой воды от утечек к потребителей в количестве 30 т/ч.

Оборудование станции размещено в здании из сборных железобе­тонных панелей. Размеры здания 30×18 м. Машинный зал разделен зву­коизолирующими перегородками на два отсека. Один из них размером 12×18 м — отсек для ГТД и ГПСВ, второй — гене­раторное помещение площадью 6×18 м.

К машинному залу примыкают вспомогательные помещения. В одном площадью 5×6 м размещается щит управления, в двух других площадью по 3×6 м душевая с раздевалкой и мастерская, в четвертом — площадью 10×12 м — оборудование химводоочистки, а также подпиточные насосы, насосы прямой и обратной сетевой воды, вакуумный деаэратор, шкаф аккумуляторной батареи.

В помещении двигателей установлены масляные блоки, включающие в себя расходные баки масла с соответствующим оборудованием и насосами, а также масляные радиаторы с вентилято­рами, всасывающими наружный воздух и выбрасывающими его после про­хождения через радиатор за пределы помещения.

Забор воздуха и выброс отработавших газов осуществляется по специальным воздухо- и газопроводам, выведенным выше кровли здания электростанции. На воздухозаборе предусматривается установка глуши­телей из асбосиликатных плит, снижающих уровень шума до нормы. На всасывающем патрубке предусматривается также установка противопыльных фильтров.

За авиационными двигателями размещены тормозящие решетки, ко­торые снижают скорость газов и создают равномерный поток газов на входе в котел-утилизатор.

Турбовинтовой двигатель АИ-20 закреплен на специальной фунда­ментной раме, расположенной на жестком основании (платформе).

Крепление двигателя к подмоторной раме при помощи четырех сто­ек с шарнирами обеспечивает центровку валов и компенсирует темпера­турные напряжения. Подмоторная рама двигателя и генератор жестко крепятся к платформе. Соединение двигателя с электрогенератором СГС-14-100-6УЗ осуществлено при помощи специального вала и соедини­тельной муфты. Длина соединительного вала позволяет установить пе­регородку между двигателем и электрогенератором, для снижения шума в генераторном отсеке. Конструкция муфты позволяет производить мон­таж и демонтаж каждого из агрегатов в отдельности.

На двигателе расположены агрегаты, которые обеспечивают авто­матизацию его запуска, подачу и масла, а также защиту двигателя в аварийных режимах.

Масса газотурбогенератора со всеми системами и устройствами в сухом состоянии около 10 т. Общая длина газотурбогенератора состав­ляет 6,4 м, ширина платформы 1,7 м, высота 2,6 м.

На станции установлены синхронные электрические генераторы СГС-14-100-6УЗ переменного тока, трехфазные, с воздушным охлаждени­ем, мощностью 2500 кВт. Напряжение генерируемого тока 6,3 кВ, часто­та 50 гц. Воздух для охлаждения генератора поступает в помещение электростанции через специальную шахту. С вращающимся возбудителем генератор связан жестко.

Распределительное устройство на 6 кВ комплектуется из девяти шкафов типа КРУН6 наружной установки.

В шкафах размещаются: ввод генератора, трансформатор собствен­ных нужд, разрядники, два отходящих фидера с масляными выключателя­ми, трансформатор напряжения.

Комплектное распределительное устройство оборудовано также блоком автоматической синхронизации с энергосистемой, энергоуста­новками.

2.2. Тепловой расчет ГТУ на базе двигателя АИ-20

Основные показатели

мощность, МВт 2,5

Рис. 7. Принципиальная тепловая схема ГТТЭЦ-7500Т/6,3.

КС — камера сгорания; ГТ — газовая турбина; ГПСВ — газовый подогреватель сетевой воды; ВД – вакуумный деаэратор

степень повышения давления 7,2

температура газов в турбине,°С:

на входе 750

на выходе 388,69

расход газов, кг/с 18,21

количество валов, шт 1

температура воздуха перед компрессором, °С 15

Расчет компрессора

Найдем теоретическое значение энтропии воздуха на выходе из компрессора. При заданных значениях температуры воздуха на входе в компрессор t1 = 15 °C и степени повышения давления воздуха в компрессоре pk = 7,2 оно составит:

0,0536 + 0,287 ln7,2 = 0,6201 ,

здесь R = 0,287 – газовая постоянная воздуха.

Тогда теоретическая температура воздуха на выходе из компрессора составит °C

КПД компрессора принят равным . Тогда действительная работа сжатия в компрессоре составит:

Hk = (i2t – i1)/hk = (234,06 – 15,04)/0,87 = 251,75 ,

где

i2t = 234,06 – энтальпия воздуха при температуре t2t = 231 °C;

i1 = 15,04 – энтальпия воздуха при температуре t1 = 15 °С.

Тогда действительная энтальпия воздуха на выходе из компрессора будет иметь значение:

i2 = i1 + Hk = 15,04 + 251,75 = 266,79 .

По найденному значению энтальпии на выходе из компрессора найдем действительную температуру воздуха на выходе из компрессора:

t2 = f(i2) = 262,88 °С.

Расчет камеры сгорания

Топливо — природный газ Шуртанского месторождения.

Объемный состав газа:

СН4 – 90,6 %,

С2Н6 – 3,45 %,

С3Н8 – 0,9 %,

С4Н10 – 0,38 %,

С5Н12 – 0,3 %,

Н2S – 0,08 %,

СО2 – 2,69 %,

О2 – 1,6 %.

Низшая теплота сгорания Q = 48340 кДж/кг.

Физической теплотой вносимой в камеру сгорания пренебрегаем. Примем КПД камеры сгорания hкс = 0,98. Тогда относительное количество воздуха, содержащееся в продуктах сгорания при температуре t3 = 750 °C за камерой сгорания составит:

gв = [Q∙hкс + L0∙i2 – (L0 + 1)∙i3(a=1)]/(i3в – i2) =

= [48340∙0,98 + 16,43∙266,79 – (16,43 + 1)∙905,916]/(799,10 – 266,79) =

= 67,63 кг/кг.

Здесь L0 = 16,43 кг/кг — теоретическая масса воздуха, необходимая для сгорания 1 кг топлива; i3(a=1) = f(t3) — энтальпия продуктов сгорания при коэффициенте избытка воздуха a = 1; i3в = f(t3) — энтальпия воздуха при температуре на выходе из камеры сгорания.

Коэффициент избытка воздуха на выходе из камеры сгорания составит:

a = (L0 + gв)/L0 = (16,43 + 67,63)/16,43 = 5,116.

Удельный расход рабочего тела в камере сгорания увеличился на величину

gв = 1/(a∙L0) = 1/(5,116∙16,43) = 0,0119 кг/кг.

Расчет газовой турбины

Адиабатный КПД турбины принят равным hт = 0,88; коэффициент потерь давления в турбине x = 0,03.

Тогда степень понижения давления в турбине составит

pт = (1 – x)∙pк = (1 – 0,03)∙7,2 = 6,984.

Теоретическая температура продуктов сгорания на выходе из турбины t4t определяется с помощью уравнения

S(T4t) = S(T3) – R∙lnpт = 1,4221 – 0,2896∙ln6,984 = 0,8592 .

Тогда

t4t = f [S(T4t), a] = 348,9 °C.

Затем найдем работу расширения газов в турбине из следующего выражения

На = (i3 – i4t)∙hт = (820,91 –365,75)∙0,88 = 400,54 кДж/кг.

Следовательно, действительная энтальпия газов на выходе из турбины может быть найдена из выражения

i4а = i3 – На = 820,91 – 400,54 = 420,37 кДж/кг.

Тогда действительная температура газов на выходе из турбины составит

t4а = f(i4а, a) = 398,98 °С.

Примем среднюю температуру стенки лопаток tст = 600 °С; число охлаждаемых венцов z = 1. Так как , то

a = (z + 1)/(2∙z) = (1 + 1)/(2∙1) = 1;

b = (z – 1)/(3∙z) = (1 – 1)/(3∙1) = 0.

Найдем среднюю температуру рабочего тела, при которой отводится теплота охлаждения из выражения

Tq = T3∙[1 – b∙(T3 – Tст)/T3] = 1023∙[1 – 0∙(1023 – 873)/1023] =

= 1023 К = 750 °С.

Принимая коэффициент эффективности охладителя a* = 0,02, находим количество теплоты, отводимой от охлаждаемых элементов проточной части из следующего выражения

0,02∙1,1817∙1∙1∙(1023 – 873) =

= 3,55 кДж/кг,

где — теплоемкость продуктов сгорания.

Коэффициент потери работы при закрытом охлаждении

Удельная работа расширения газа в турбине с учетом потерь от охлаждения

кДж/кг.

Тогда энтальпия газов в конце расширения составит

кДж/кг.

Cредняя температура газа, при которой охладитель выводится в проточную часть турбины,

К = 600 °С.

Для определения примем, что процесс расширения газа в турбине — политропический с показателем политропы

Тогда степень понижения давления охладителя

Принимая коэффициент использования хладоресурса охладителя , будем считать, что на охлаждение дисков и элементов статора потребуется воздуха . Тогда расход воздуха на охлаждение

Здесь ср,охл — средняя изобарная теплоемкость охладителя: при t = (tст + t2)/2 = (600 + 262,68)/2 = 431,34°C

Cредняя энтальпия охладителя при выводе в проточную часть

кДж/кг,

тогда ºС.

Полагая, что политропические КПД процессов расширения газа и охлаждения совпадают, имеем

Энтропию охладителя в конце процесса расширения газа определим с помощью уравнения

тогда энтальпия охладителя в конце расширения

= 189,62 кДж/кг.

Следовательно, работа расширения охладителя составит

кДж/кг.

Cуммарная удельная работа расширения газа и охладителя

кДж/кг.

Расход охладителя, отнесенный к расходу воздуха через компрессор

Коэффициент избытка воздуха смеси газа и охладителя

.

Энтальпия смеси газа и охладителя за турбиной

тогда температура смеси газов и охладителя на выходе из турбины °C.

Выходные характеристики ГТУ

Удельная полезная работа ГТУ (при )

Коэффициент полезной работы

Расход воздуха при мощности 2,5 МВт

кг/с.

Расход топлива при мощности 2,5 МВт

Gтоп = Gк∙gтоп = 17,95∙0,0119 = 0,21 кг/с.

Суммарный расход выхлопных газов

Gг = Gк + Gтоп = 17,95 + 0,21 = 18,16 кг/с.

Удельный расход воздуха в турбине

Удельный расход теплоты в камере сгорания

кДж/кг.

Эффективный КПД ГТУ

Удельный расход условного топлива на выработанную электроэнергию (при КПД генератора hген = 0,95) без утилизации тепла выхлопных газов

2.3. Расчет газо-водяного подогревателя сетевой воды

Исходные данные для расчета газо-водяного подогревателя:

Расход сетевой воды через подогреватель - 75 т/ч

Температура воды на входе - 60 °С

Температура воды на выходе - 120 °С

Расход газов через подогреватель - 18,16 кг/с

Температура газов на входе - 388,69 °С

Газо-водяной подогреватель имеет поверхность нагрева в виде поперечно омываемых газами труб с наружным оребрением, расположенными в шахматных пучках. Количество ходов по воде — 3, по газу — 1.

Геометрические параметры подогревателя:

Диаметр труб - 0,028 м

Диаметр ребра - 0,048 м

Внутренний диаметр трубы - 0,022 м

Толщина ребра - 0,002 м

Шаг ребра - 0,005 м

Поперечный шаг труб - 0,06 м

Продольный шаг труб - 0,045 м

Ширина подогревателя - 2 м

Высота подогревателя - 2 м

Для определения температуры газов на выходе из подогревателя составим уравнение теплового баланса подогревателя:

Qв = Qг,

где Qв = Gв(h" ­– h') — теплота, воспринимая водой,

здесь

Gв = 75 т/ч = 20,83 кг/с – расход воды через подогреватель;

h" = 505,05 кДж/кг – энтальпия воды на выходе из подогревателя;

h' = 253,23 кДж/кг – энтальпия воды на входе в подогреватель;

Qг = Gг(i' – i") — теплота, переданная газами воде в подогревателе,

здесь

Gг = 18,16 кг/с – расход газов через подогреватель;

i' = 408,7 кдж/кг – энтальпия газов на входе в подогреватель.

Тогда энтальпия газов на выходе из подогревателя может быть найдена из следующего выражения

i" = =

= 119,85 кДж/кг.

Тогда температура газов на выходе из подогревателя составит J" = 116,6 °С.

Задачей расчета является определение необходимой поверхности нагрева подогревателя для обеспечения требуемой тепловой производительности.

Живое сечение поверхности нагрева для прохода газов определяется по следующей формуле

F=

= 1,6 м2.

Здесь — поперечный шаг труб, м;

d — диаметр несущей трубы, м;

— высота ребра, м;

— шаг ребер, м;

— толщина ребра, м.

Объем газов, проходящих в расчетном сечении, при плотности r = 1,292 кг/м3

Vг = Gг/r = 18,16/1,292 = 14,09 м3/с.

Скорость газов в расчетном сечении

wг = Vг/F = 14,09/1,6 = 8,806 м/с.

Для круглых труб с круглыми ребрами отношение поверхности ребер к полной поверхности с газовой стороны

= =

= = 0,9005.

Здесь D — диаметр ребра, м.

Отношение участков несущей поверхности без ребер к полной поверхности с газовой стороны

.

Далее определим коэффициент теплоотдачи конвекцией при поперечном омывании шахматного пучка труб с круглыми ребрами из следующего выражения.

aк = 0,23Сzj=

= 0,23∙1,02∙1,2280,2∙=

= 55,38 ккал/(м2∙ч∙°С)

Здесь

Сz — поправочный коэффициент, определяется по номограмме 26 [Л. 8];

j==1,228 — параметр, учитывающий геометрическое расположение труб в пучке,

здесь

s1 = s1/d = 0,06/0,028 = 2,143 — относительный поперечный шаг труб;

s'2 = =1,931 — относительный диагональный шаг труб;

s2 = s2/d = 0,045/0,028 = 1,607 — относительный продольный шаг труб;

l — коэффициент теплопроводности при средней температуре потока газов, ккал/(м2∙ч∙°С);

n — коэффициент кинематической вязкости при средней температуре потока газов, м2/с.

Приведенный коэффициент теплоотдачи с газовой стороны, отнесенный к полной поверхности, определяется по формуле

a'1пр =

= 47,89 ккал/(м2∙ч∙°С).

Здесь, Е — коэффициент эффективности ребра, определяемый в зависимости от формы ребер и параметров bhрб и D/d по номограмме 24 [Л. 8];

b = = = 37,146;

lм — коэффициент теплопроводности металла ребер, ккал/(м2∙ч∙°С);

m — коэффициент, для ребер постоянной толщины равен 1;

— коэффициент, учитывающий неравномерную теплоотдачу по поверхности ребра, для ребер с цилиндрическим основанием принимается равным 0,85.

e — коэффициент загрязнения, при сжигании газа принимается равным 0.

Коэффициент теплопередачи, отнесенный к полной поверхности с газовой стороны, найдем по следующей формуле

k = .

Для поверхностей нагрева, в которых нагревается вода, влиянием 1/a2 пренебрегают, т.к. a2 >> a1. Тогда

k = a'1пр = 45,38 ккал/(м2∙ч∙°С) = 52,77 Вт/(м2∙К).

Для нахождения необходимой поверхности нагрева подогревателя, необходимо решить уравнение теплового баланса

Qг = kHDt,

H =

Далее необходимо определить температурный напор. Для этого составим схему движения сред в подогревателе.

В подогревателе применена трехходовая по воде схема с перекрестным током.

Температурный напор в подогревателе определяется по следующей формуле

Dt = jDtпрт = 1∙71,26 = 71,26 °С.

Рис. 8. Схема движения сред в подогревателе.

Здесь Dtпрт = =71,26 °С — температурный напор для противоточной схемы движения сред в подогревателе.

Здесь = J’ – t” = 388,69 – 120 = 268,69 °С — наибольшая разность температур сред на конце поверхности нагрева,

= J” – t’ = 116,6 – 60 = 56,6 °С — наименьшая разность температур сред на конце поверхности нагрева.

j = 1 — коэффициент пересчета от противоточной схемы к перекрестной. Находится по номограмме 31 [Л. 8] в зависимости от параметров Р и R.

Полный перепад температуры газа в подогревателе

tб = J’ – J” = 388,69 – 116,6 = 272,09 °С

Полный перепад температуры воды в подогревателе

tм = t” – t’ = 120 – 60 = 60 °С

Параметр Р =

Параметр R = .

Тогда, с учетом найденных ранее значений Qг, Dt и k, определим необходимую полную поверхность нагрева подогревателя.

H = = = 1394,828 м2.

Тогда, оребреная поверхность труб будет иметь площадь 1256,043 м2, а гладкая соответственно 138,785 м2. Тогда общая длина труб может быть найдена простыми вычислениями и она составит 2629,56 м.

При заданных геометрических параметрах подогревателя можно найти количество труб в ряду и количество рядов труб. Они составят

количество труб в ряду – 34 шт,

количество рядов – 39 шт.

Геометрические размеры подогревателя при полученном количестве труб в ряду и количестве рядов труб составят (рабочая часть, без учета подводящих и отводящих патрубков по газовой и водяной стороне):

длина — 1,8 м,

ширина — 2 м,

высота — 2 м.

2.4. Тепловой расчет вакУУмного деаэратора

подпиточной воды тепловой сети

Для расчета вакуумного деаэратора подпиточной воды теплосети принимаются следующие исходные данные:

Производительность по деаэрированной воде, Dх.о — 30 т/ч

Температура поступающей в деаэратор хими- — 30 °С

чески очищенной воды, tх.о

Энтальпия химически очищенной воды, i — 126 кДж/кг

Температура сетевой воды, tc.в — 120 °С

Энтальпия сетевой воды, iс.в — 505,05 кДж/кг

В соответствии с рекомендациями ЦКТИ расход выпара из деаэратора должен составлять 5 кг на 1 т деаэрируемой воды [Л. 9], или

Dвып = 5Dх.о·10-3 = 5·30·10-3 = 0,15 т/ч.

Абсолютное давление пара в деаэраторе принимается равным рд.п = 10 кПа, температура деаэрированной воды (при температуре насыщения) tд.н = 45 °С, ее энтальпия i = 188 кДж/кг, энтальпия сухого насыщенного пара iд.н = 2583 кДж/кг.

Расход греющей среды — сетевой воды в деаэратор определяется из уравнения его теплового баланса, которое в данном случае имеет вид

.

Потери теплоты в окружающую среду учитываются здесь коэффициентом hд = 0,98. Решая уравнение теплового баланса, находим расход сетевой воды, необходимый для деаэрации подпиточной воды

Dс.в = 7,568 т/ч = 2,1 кг/с.

2.5. технико-экономические показатели ГТТЭЦ

Установленная электрическая мощность ГТТЭЦ

Nуст = n·Nгту = 3·2500 = 7500 кВт,

где п — количество ГТУ на ГТТЭЦ, шт.

Расход электроэнергии на собственные нужды принят равным 5,5 %.

Номинальная тепловая мощность установленных на ГТТЭЦ ГПСВ

QТЭЦ = n·QГПСВ = 3·5245,41 = 15736,23 кВт

Коэффициент первичной энергии ГТТЭЦ брутто:

h = = = 0,763.

Коэффициент первичной энергии ГТТЭЦ нетто:

h=

= = 0,732.

КПД выработки электрической энергии в теплофикационной ГТУ

h= = = 0,5311,

где

Не — удельная работа газа в ГТУ, кДж/кг;

q1 — удельный расход теплоты в камере сгорания ГТУ на 1 кг рабочего тела, кДж/кг;

qт.п = QГПСВ/Gг = 5245,41/18,16 = 288,84 кДж/кг — удельный отвод тепла в ГПСВ от 1 кг уходящих газов ГТУ, где QГПСВ — тепловая мощность ГПСВ, Gг — расход газов в ГТУ, кг/с.

Расход условного топлива на выработку электроэнергии в теплофикационной ГТУ

b = 231,6 .

Часовой расход условного топлива на выработку электроэнергии

B= b·Nгту = 0,2316·2500 = 579 кг у.т./ч.

Часовой расход условного топлива в ГТУ

B= Gтоп··3600 = 0,21··3600 = 1246 кг у.т./ч, где Gтоп — расход натурального топлива в ГТУ, кг/с.

На выработку теплоты в соответствии с "физическим методом" относится оставшееся количество условного топлива

В= B— B= 1246 — 579 = 667 кг у.т./ч

Тогда удельный расход условного топлива на выработку 1 Гкал теплоты в теплофикационной ГТУ составит

b= В/ QГПСВ = 667/4,51 = 147,89 кг у.т./Гкал.

ГЛАВА 3. Станция полного энергоснабжения

(теплота, электроэнергия и холод) на базе

конвертированного АГТД

3.1. Особенности создания источника полного энергоснабжения — Теплоэлектрохладоцентрали

Следующим этапом развития газотурбинной теплоэлектроцентрали может стать создание на ее основе источника полного энергоснабжения — газотурбинной теплоэлектрохладоцентрали (ГТТЭХЦ), позволяющей вырабатывать все практически используемые виды энергоресурсов — теплоту, электроэнергию и холод.

Такие установки особенно актуальны для специфических климатических условий Узбекистана, характеризующихся непродолжительной зимой и соответственно непродолжительным отопительным периодом (3000 — 3500 ч), и жарким летом с температурой воздуха, доходящей в некоторых областях Узбекистана до 42 — 46 °С. Даже при таких условиях комбинированная выработка электроэнергии с одновременным отпуском тепловой энергии потребителю оказывается выгодной, что показано в главах 2 и 4 настоящей работы. При этом использование авиационных двигателей, особенно отработавших свой летный ресурс, позволяет значительно сократить сроки монтажа и ввода в эксплуатацию подобных станций, а также сократить капитальные вложения в их строительство.

Для большинства населенных пунктов Узбекистана, расположенных в сельскохозяйственных районах, характерна удаленность от источников снабжения энергоресурсами. Для обеспечения их энергией приходится сооружать ЛЭП, которые характеризуется дополнительными потерями в размере около 15 — 20 % электроэнергии, вырабатываемой на конденсационных электростанциях (КЭС) с КПД не превышающем 30 — 35 %. Теплота для теплоснабжения вырабатывается обычно в местной котельной, имеющей КПД не превышающий 85 %. При этом высокий тепловой потенциал сжигаемого топлива (2000 — 2500 °С) в котельной используется для подогрева воды до 95 — 120 °С и, в лучшем случае, для выработки пара промышленных параметров.

Для обеспечения комфортных условий для проживания, на рабочем месте, широко используются системы местного кондиционирования, потребляющие электроэнергию, опять же производимую на КЭС.

Предприятия сельскохозяйственного комплекса, особенно в животноводстве, характеризуются средними показателями, особенно по таким, как прирост живого веса на фермах. Повышение производительности ферм можно достичь с помощью систем для обеспечения комфортных условий для скота в различное время года: тепла — в зимнее, кондиционирования воздуха — в летнее время. Для хранения продукции сельского хозяйства необходимо создание специальных хранилищ с созданием в них необходимых условий хранения, в том числе и низкой температуры летом.

Обеспечение в летнее время холодом систем кондиционирования воздуха и теплом в зимнее время — систем вентиляции, помогает увеличить производительность труда рабочих на промышленных предприятиях.

Таким образом, видно, что для улучшения качества жизни населения, для повышения производительности как в сельском хозяйстве, так и в промышленном производстве Узбекистана, необходимо снабжение всеми видами энергии, а именно — теплом, электроэнергией и холодом.

Комбинированное производство всех трех видов энергии может быть осуществлено на принципиально новом источнике полного энергоснабжения — теплоэлектрохладоцентрали (ТЭХЦ).

Для создания источника полного энергоснабжения удобно использовать установки на базе АГТД, т.к. они компактны, не требуют больших удельных капиталовложений, поставляются в состоянии заводской готовности и их легко компоновать и создавать на их базе необходимые решения для конкретных нужд потребителя. Для создания на базе АГТД ГТТЭХЦ необходимо ГТТЭЦ, описанную в главе 2, дополнить АБХМ. При этом несколько увеличатся капитальные вложения и незначительно усложнится схема установки за счет появления дополнительных трубопроводов, подающих греющую, охлаждающую и охлаждаемую воду в АБХМ. При этом возрастет расход электроэнергии на собственные нужды, т.к. в состав АБХМ входит насосное оборудование для перекачки слабого и смешанного растворов, рециркулируемой воды. Кроме того, необходимо установить насосы для подачи охлаждающей и охлаждаемой воды в и из АБХМ. В дальнейших расчетах принято, что увеличение расхода электроэнергии на собственные нужды составит 2 % от установленной электрической мощности ГТТЭХЦ.

Схема ГТТЭХЦ на базе конвертированного АГТД АИ-20 (с одной АБХМ, присоединенной к трубопроводу сетевой воды) представлена на рис. 9.

3.2. Расчет тепловых потоков абсорбционной бромисто-литиевой

холодильной машины

Схема машины — с генератором затопленного типа и рецирку­ляцией слабого раствора и воды соответственно через абсорбер и испаритель. Подача охлаждающей воды в абсорбер и конденсатор параллельная.

Исходные данные

Температура воды, К:

греющей Th 393

охлаждающей Tw 299

охлажденной Т3 280

Принятые значения температур и давлений следующие. Выс­шая температура в конце процесса кипения раствора в генераторе T4 = Th — DTh = = 383 — 28 = 365 К. Температуры конденсации водяного пара Tк, раствора в конце процесса абсорбции Т2, кипения воды в испарителе Т0 приняты равными

АБХМ

Рис. 9. Принципиальная тепловая схема ГТТЭХЦ-7500Т/6,3.

КС — камера сгорания; ГТ — газовая турбина; ГПСВ — газовый подогреватель сетевой воды; ВД – вакуумный деаэратор; АБХМ – абсорбционная бромисто-литиевая холодильная машина

Tк = 307 К, Т2 = 307 К, Т0 = 277 К. Давления конденсации рк и кипения р0 рабочего тела соответ­ственно будут рк = 5,45 кПа, р0 = 0,83 кПа.

Так как давление конденсации пара рабочего тела значительно выше давления его кипения, удельный объем пара в конденсаторе при данных условиях почти в шесть раз ниже удельного объема пара в испарителе. В связи с этим в блоке генератор — конденса­тор скорость движения пара из генератора в конденсатор будет низкой и гидравлическими сопротивлениями прохождению пара между указанными аппаратами можно пренебречь и принять давление кипения раствора рh равным давлению конденсации пара рк, т. е. рh = рк = 5,45 кПа. В блоке абсорбер — испаритель из-за высокого значения удельного объема пара скорость его движения из испарителя в абсорбер будет значительной (40 — 50 м/с), вследствие чего необходимо учесть суммарные гидравли­ческие сопротивления SDp на всех участках движения пара из испарителя в абсорбер. По опытным данным в промышленных типах машин величина SDp достигает 0,133 кПа. Тогда давление пара в абсорбере ра = р0 — SDp = 0,83 — 0,133 = 0,697 кПа. Теоретическое значение концентраций x слабого и x крепкого растворов определяют по x-i диаграмме по соответствующим значениям Т2, ра и Т4, рh: x = 58,6 %, x = 67,5 %. Действительная концентрация крепкого раствора ниже теорети­ческого значения x на величину недовыпаривания Dxr раствора, которое в генераторе затопленного типа возникает в основном из-за отрицательного влияния на процесс кипения гидростати­ческого давления столба кипящего раствора.

По опытным данным в генераторах затопленного типа промыш­ленных машин величина Dxr изменяется в зависимости от пара­метров работы в пределах 2,5—3,5 %. Тогда xr = x — Dxr = 67,5 — 3,5 = 64,0 %. Действительная концентрация креп­кого раствора из-за опасности его кристаллизации в аппаратах, трубопроводах и других элементах машины не должна превы­шать 64 %.

Рис. 10. Схема АБХМ: а — схема машины; б — процессы в x-i диаграмме;

I – конденсатор; II – генератор; III – испаритель; IV, VI, VII – насосы рециркулируемой воды, смешанного и слабого растворов соответственно; V – абсорбер;

VIII – теплообменник

Если xr > 64 %, то необходимо изменить температуру Т4 креп­кого раствора или давление его кипения рh путем увеличения соответственно величины DTh или температуры конденсации Тк. Можно одновременно изменять T4 и Тк до тех пор, пока не будет выполнено условие xr ≤ 64 %. Действительная концентрация слабого раствора xa в абсорбере выше теоретического значения концентрации x на величину недонасыщения Dxa раствора.

Величина Dxa зависит от параметров работы машины и может изменяться в пределах 0,5—2,5 %. Тогда xa = x + Dxa = 58,6 + 1,4 = 60,0 %. При наличии конечной разности DTр температур на «холодной» стороне теплообменника температура крепкого раствора на выходе из него T8 = T2 + DTр. Разность температур DTр принимается в пределах 15—20 К. Тогда T8 = 307 + 15 = 322 К. Параметры узловых точек циклов, изобра­женных на рис. 10, приведены в таблице 2.

Таблица 2

Параметры узловых точек АБХМ

Состояние вещества

Т, К

р, кПа

x, %

i, кДж/кг

Жидкость

Вода после конденсатора

Тк = Т3 = 307

рк = 5,45

x = 0

i3 = 561,1

Раствор:

крепкий после генератора

Т4 = 365

рh = 5,45

xr = 64

i4 = 366,8

слабый после абсорбера

Т2 = 307

pa = 0,697

xа = 60

i2 = 252,9

крепкий после теплообменника

Т8 = 322

рh = 5,45

xr = 64

i8 = 289,74

Вода в испарителе

Т0 = Т1 = 277

р0 = 0,83

x = 0

i1 = 435,5

Пар

После испарителя

Т1’ = 277

р0 = 0,83

x = 0

i1’ = 2914,2

Кратность ц

Перейти на страницу: 1 2 3 4 5

Back to Top