Энергия и энергетика сегодня

Горение в закрученном потоке

Общий вид распределений температуры в пламени вихревой горелки представлен на рис. 4.43 а и 4.436. Распределение температуры по радиусу показано на рис. 4.43а

Рис.4.43а.Радиальное распределение температуры в факеле вихревой горелки.

Рис. 4.436. Изменение максимальной температуры вдоль оси горелки.

Максимум температуры расположен вблизи выходного сечения, непосредственно за границей зоны обратных токов. Распределение температуры в зоне обратных токов практически равномерное, что свидетельствует о реализации в этой области «реактора интенсивного смешения». Вблизи зоны реакции в пламени обнаруживаются пики в распределении температуры и ее градиента. Представленное на рис. 4.436 рас­пределение максимальной температуры вдоль потока показы­вает, что максимум медленно нарастает к выходному сечению горелки, а за этим сечением наблюдается резкий спад, соответ­ствующий выгоранию топлива. Проблема измерения параметров потока в вихревых горел­ках весьма сложна, и только в последнее время удалось вы­яснить возможности проведения измерений скорости, давления и интенсивности турбулентности в этих устройствах. Выполнен­ные ранее с помощью термоанемометра и насадка полного давления измерения в изотермических потоках указывают на высокий уровень турбулентности. На основании этого счита­лось, что нельзя для определения характеристик турбулентно­сти использовать методы, основанные на измерении пульсации давления, которые применимы только в слаботурбулизованных потоках (с интенсивностью турбулентности менее 30%). Однако, поскольку горение подавляет амплитуды воз­мущений в виде прецессии вихревого ядра на два порядка (в особенности при 5>0,5), ПВЯ не является определяющим элементом течения, и эффективный максимум турбулентных пульсации в некоторых горелках уменьшаетсяо и по­зволяет использовать методы, основанные на измерении пуль­сации давления . Спектральный анализ пульсации дав­ления в вихревых горелках показывает, что осцилля­ции носят более случайный характер, чем в изотермическом потоке, а следовательно, при горении изменяется и природа процесса смешения. В изотермическом потоке доминируют пульсации скорости, имеющие довольно регулярный характера а при горении имеющие случайный, турбулентный характер только закруткой, но также и наличием диффузора с полууглом раскрытия 35°. Действительно, если выходная часть имеет цилиндрическую форму, то при такой интенсивности закрутки распад вихря только начинается и рециркуляционная зон только зарождается. Результаты показывают, в частности, что в реагирующих пото­ках в рециркуляционных областях течение существенно неизо­тропно. При горении интеграл от пульсации скорости, взятый по всему полю течения, значительно больше, чем в изотерми­ческом потоке, что в определенном смысле подтверждает гипо­тезу о генерации турбулентности при наличии пламени.

Как показывают эти исследования, характеристики потоков с горением и без горения значительно различаются, в особен­ности это касается распределения продольной скорости, формы. поперечного размера и протяженности зоны обратных токов. В отличие от результатов, полученных в работах, здесь при горении протяженность и поперечный размер зоны обратных токов значительно возрастали, зона обратных токов простиралась вниз по потоку по крайней мере на расстояние, равное двум диаметрам выходного сечения. Интенсивность пульсации продольной составляющей скорости везде, за исклю­чением области вблизи выходного сечения горелки, при горе­нии уменьшалась. Высокий уровень пульсации продольной ско­рости наблюдался вблизи границы рециркуляционной зоны. здесь же проявлялась существенная анизотропия пульсации. Вообще, существенная разница интенсивностей пульсации про­дольной и окружной скоростей в потоках с горением и без го­рения наблюдается в большей части поля течения.

Перейти на страницу: 1 2 3

Back to Top