Энергия и энергетика сегодня

Расчет радиаторов

В В Е Д Е Н И Е

Базовый уровень подготовки инженера-энергетика в области информатики и вычислительной техники определяется необходимым набором знаний, умений и навыков в применении ЭВМ для решения различных технических задач.

Специалисты этой категории, помимо умения использовать прикладное программное обеспечение, должны быть программирующими пользователями, т.к. их профессиональная деятельность связана с выполнением большого количества теплотехнических расчетов.

Для соблюдения принципа фундаментальности высшего образования работа построена на базе рассмотрения вопросов применения ЭВМ для решения основных задач теории теплообмена. К одной из таких задач относится задача, связанная с определением температурного поля не одномерных тел численными методами.

Рассмотрим методику подготовки и решения указанной задачи на персональном компьютере.

1. О С Н О В Н Ы Е П О Л О Ж Е Н И Я М Е Т О Д И К И

П О С Т Р О Е Н И Я К О Н С Е Р В А Т И В Н О-Р А З Н О С Т Н О Й С Х Е М Ы ПРИ Р Е Ш Е Н И И Н Е О Д Н О М Е Р Н Ы Х З А Д А Ч С Т А Ц И О Н А Р Н О Й Т Е П Л О П Р О В О Д Н О С Т И

Определение температурного поля в любой момент времени является основной задачей теории теплопроводности. Для изотропного тела {с постоянным по различным направлениям коэффициентом теплопроводности l} она может быть описана дифференциальным уравнением теплопроводности

▼ T + Qv/l = 1/a*( dT/d(t)), (1)

где Т - температура; а - коэффициент температуропроводности, а=l/(r*c); r - плотность материала, с - удельная теплоемкость при постоянном давлении, ▼ -обозначение оператора Лапласа {▼= d /dx + d /dy + d /dz - в декартовых координатах x, y, z }; t - время, Qv - объемная плотность теплового потока.

Уравнение теплопроводности является математическим выражением закона сохранения энергии в твердом теле.

При решении задачи к дифференциальному уравнению теплопроводности необходимо добавить краевые условия. В описание краевых условий входят: поле температур для какого-нибудь предшествующего момента времени {начальные условия}, геометрия тела {геометрические условия}, теплофизические характеристики тела {физические условия} и закон теплообмена между поверхностью тела и окружающей средой {граничные условия}.

Если процесс теплопроводности не только стационарный {dT/d(tay)=0}, но и происходит без тепловыделения внутри материала (Qv = 0), то уравнение принимает вид

▼(Т) = 0 . (2)

Ввиду сложности и трудоемкости решения неодномерных задач теплопроводности аналитическими методами в инженерной практике наиболее часто используют приближенные. Один из них – метод конечных разностей, непосредственно базирующийся на дифференциальном уравнении теплопроводности и граничных условиях, представляет наибольший интерес.

В настоящее время значительное распространение получили конечно-разностные методы, построенные с использованием известных законов сохранения. В этом случае разностные схемы получили название консервативные. Такой подход к построению схемы, сохраняющий физическую сущность задачи, предпочтительнее чисто аналитического подхода, заключающегося в непосредственной записи дифференциальных уравнений конечно-разностными аналогами.

Следует заметить, что теория конечно-разностных численных методов является самостоятельным разделом вычислительной математики и широко представлена в специальной литературе[1,2,]. С основными методами построения конечно-разностных схем, алгоритмами расчета, программным обеспечением применительно к задачам теплообмена можно ознакомиться в учебной литературе [3,4,5].

При изложении указанного метода особое внимание уделено физическому смыслу построения консервативной разностной схемы и ее реализации на ПЭВМ в задачах теплопроводности.

При использовании численного метода с консервативной разностной схемой твердое тело разбивают на элементарные объемы. Предполагается, что масса такого элементарного объема сосредотачивается в его центре, называемом узлом. Для каждого узла на основе закона сохранения энергии составляется уравнение теплового баланса, которое включает значения всех тепловых потоков на границах объемов (ячеек). Если ячейка прилегает к поверхности тела, то выражения для определения тепловых потоков должны описывать теплообмен между телом и окружающей средой, то есть учитывать граничные условия. После выполнения преобразований с уравнениями теплового баланса получают алгебраические уравнения для температуры в каждом узле. Поскольку число узлов и число ячеек совпадают, то образованная система алгебраических уравнений является конечно-разностным аналогом дифференциального уравнения теплопроводности и заменяет его с соответствующими граничными условиями. Такой подход к составлению конечно-разностного аналога, увязанного с тепловым балансом, позволяет получать правдоподобные решения даже при грубом выборе расстояния между узлами (размера ячейки сетки).

Перейти на страницу: 1 2 3 4 5 6

Back to Top